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Abstract Forested areas exhibit high spatial variability in the distribution of snow water equivalent
(SWE). Previous work has focused on forested areas with respect to snow accumulation in adjacent
clearings. There is generally less snow in forested areas with greater variability relative to open areas due to
the influence of tree canopies. However, the length scale of the transition from open areas to forested
conditions is uncertain. Hence, the goal of this paper is to determine the length scales associated with forest
boundary effects on SWE accumulation distribution patterns within forest stands. To accomplish this,
we utilize a unique ground‐penetrating radar data set collected during the NASA SnowEx campaign on
Grand Mesa, Colorado, in February 2017 to determine spatial SWE distribution patterns of areas under
canopy and in clearings, and the length scales of transitions between these patterns (i.e., the size of
within‐stand boundary areas). We define within‐stand boundary areas as the transitional zone from a
clearing to relatively stable SWE distribution, or background distribution patterns, within forest stands. The
largest within‐stand boundary effect occurred on the leeward side of stands with a mean extent of 44 m,
or 4.3 mean canopy heights. In contrast, windward within‐stand boundary effects showed a mean extent
of 28m, or 3.7 mean canopy heights. We present a conceptual framework of the complex wind dynamics that
occur in forest stands to explain the within‐stand boundary effects on SWE distribution. Future
investigations could improve understanding of this complex process and associated driving variables.

1. Introduction

Water originating from seasonal snowpacks provides vital resources for over a billion people globally
(Mankin et al., 2015) and is valued at billions of dollars annually in the western United States (Sturm
et al., 2017). The availability of valuable water resources from snow depends on accumulation and melt pat-
terns, which drive diurnal and seasonal fluctuations in streamflow (Barnhart et al., 2016; Jencso &
McGlynn, 2011; Lundquist & Dettinger, 2005; Mutzner et al., 2015) and hillslope‐stream connectivity
(McNamara et al., 2005; Webb, Fassnacht, et al., 2018). Within a watershed, snow accumulation and melt
vary with elevation, topography (e.g., aspect and slope), and canopy effects on wind redistribution and
energy budgets (Blöschl, 1999; Elder et al., 1991; Molotch & Meromy, 2014; Webb, 2017). Canopy effects
result in higher spatial variability of snow depth and snowmelt (Andreadis et al., 2009; Lopez‐Moreno &
Latron, 2008; Moeser et al., 2016; Musselman, Molotch, Margulis, Kirchner, et al., 2012) that can similarly
increase variability of infiltration patterns (Lundberg et al., 2016; Webb et al., 2015) enough to impact runoff
processes (Webb, Williams et al., 2018). Numerous studies of snow‐forest interactions have occurred (e.g.,
Lundquist et al., 2013; Pomeroy et al., 1998; Varhola et al., 2010). However, field and modeling studies on
canopy‐snow interactions have often been limited to the plot scale (e.g., Troendle & Meiman, 1986;
Troendle et al., 1988) with little quantitative focus in the transitional zones across forest stand boundaries,
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or the forest‐meadow and forest‐shrubland ecotones (e.g., Gosz, 1993). There is generally less snow and
higher variability in forested areas relative to open areas due to the influence of tree canopies, with wind
direction and orientation being important factors (e.g., Golding & Swanson, 1986; Wheeler, 1987).
However, less is known toward the spatial scales of snow water equivalent (SWE) distribution patterns
across forest and non‐forest ecotones.

Improving parameterizations of forest‐SWE interactions remains a challenge in process‐based hydrologic
model development. Such improvements are challenging given the high spatial heterogeneity in
forest‐SWE interactions (i.e., varying over scales ranging from 1 to 10 m) such as non‐uniform snow unload-
ing from canopies, complex distributions of sub‐canopy shortwave and longwave radiation, and reduction in
sub‐canopy wind fields (Clark et al., 2011). Many snow models were initially developed and validated in
open areas rather than in forests; hence, their performance for simulating forest processes was largely
unknown until the last decade. The first comprehensive assessment of model representation of forest effects
on snow was during SnowMIP2 (Rutter et al., 2009), which showed that modeling SWE in forests was more
challenging than in open areas. Efforts to improve how models represent SWE distributions in forests
include developing high‐resolution models that use detailed canopy data (Broxton et al., 2015), adding more
canopy layers (e.g., Gouttevin et al., 2015), enhancing forest structure characterization and radiation trans-
mission (Musselman, Molotch, Margulis, Lehning, et al., 2012; Varhola & Coops, 2013), and developing
canopy gap modules (Sun et al., 2018). However, spatially continuous high‐resolution snow observations
spanning from areas under dense canopy to large clearings are required to evaluate model enhancements
and further refine forest process representations.

Numerous methods are available to remotely observe snow depth and SWE (Bair et al., 2016; Bühler
et al., 2015; Dozier et al., 2016; Frei et al., 2012; Nolin, 2010; Painter et al., 2016; Schneider &
Molotch, 2016; Shah et al., 2016) though these methods are often hindered in areas with dense forest cano-
pies (Bühler et al., 2016; Hopkinson et al., 2012; Tinkham et al., 2014). For example, in a recent study air-
borne LiDAR surveys were unable to derive snow depth at high resolution (1 m) for 17% of all forested
sites analyzed (Currier et al., 2019). Ground‐based observations for forested areas include point measure-
ments of depth and density (Elder et al., 1998; Sold et al., 2013; Sturm & Holmgren, 2018) and automated
meteorological stations (e.g., snow telemetry sites in the United States in forest gaps; Serreze et al., 1999).

Ground‐penetrating radar (GPR) is a mature technique that has been utilized in snow applications for dec-
ades (e.g., Ellerbruch & Boyne, 1980; Griessinger et al., 2018; Gubler & Hiller, 1984; Marshall & Koh, 2008;
McGrath et al., 2015; Webb, McGrath, et al., 2018) with the primary advantage being the ability to rapidly
obtain near continuous estimates of snow depth and SWE over greater spatial extents than traditional
ground‐based techniques. Furthermore, additional snowpack properties such as density and liquid water
content can be estimated from GPR data (Bradford et al., 2009; Heilig et al., 2009; Marshall et al., 2005,
2007; Webb, Jennings, et al., 2018). For SWE estimates, GPR data are less sensitive to natural snow density
variability relative to other SWE estimation methods based on depth (Raleigh & Small, 2017) since density is
inversely related to radar velocity (Clair & Holbrook, 2017). Because of this relationship, errors in SWE for
GPR‐based estimates are approximately half of other depth‐based methods (Marshall et al., 2005). Thus,
GPR‐based SWE estimates can be used for water budget analysis, validation of snowmodels and remote sen-
sing products, and spatial pattern analyses for locations that may be difficult to otherwise observe such as
under canopy in forested areas. For these reasons, GPR observations were one of the ground‐based remote
sensing techniques deployed during the NASA SnowEx Campaign in 2017 (SnowEx17; McGrath
et al., 2019).

SnowEx is a multiyear snow observation experiment with two driving scientific questions in 2017 being: (1)
what is the distribution of SWE and the snow energy balance in different canopy types, canopy densities, and
terrain? and (2) what is the sensitivity and accuracy of different SWE sensing techniques in different canopy
types, canopy densities, and terrain? The largest field campaign of SnowEx17 occurred at GrandMesa (GM),
Colorado, with over 100 participating scientists collecting airborne, in situ, and ground‐based remotely
sensed data (Brucker et al., 2017; Kim, 2018; Kim et al., 2017). This was the largest snow community airborne
and field experiment in the United States since the NASA Cold Lands Process Experiments in 2002–2003.
Many of the field observations occurred along pre‐determined 300 m long transects designed to capture vari-
able canopy densities and terrain.
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Data from SnowEx17 provide opportunities to examine forest boundary effects on the SWE distribution in
within‐stand boundary areas. For the purposes of this paper, we define six distinct areas within and around
a forest stand, defining the forest boundary as the edge between forest canopy and clearing. These areas are
in clearing (present on both sides of forest stand), windward in‐clearing boundary area, windward
within‐stand boundary area, under canopy, leeward within‐stand boundary area, and leeward in‐clearing
boundary area (Figure 1). Previous work in canopy‐snow interactions has largely focused on in‐clearing
boundary areas (e.g., Currier & Lundquist, 2018; Hiemstra et al., 2002, 2006) or under canopy comparisons
to in clearing conditions (e.g., Lundquist et al., 2013; Varhola et al., 2010). However, there remains a gap in
understanding the length scales of boundary effects on SWE distribution for within‐stand boundary areas.
Here we define the length scale of boundary effects as the distance from the forest boundary that the transi-
tion from in clearing to under canopy SWE distribution patterns occurs.

The goal of this paper is to quantify the length scales associated with forest boundary effects on SWE accu-
mulation to constrain within‐stand boundary areas. In other words, what distances do transitions from
in‐clearing boundary areas to under canopy SWE distribution patterns occur? To accomplish this, we use
a GPR data set obtained during SnowEx17 on GM. We utilize this data set to assess the following research
questions: (1) What are the distances from the forest boundary over which within‐stand spatial patterns of
SWE are affected (i.e., the extent of within‐stand boundary areas in Figure 1)? and (2) Are the SWE distribu-
tion patterns significantly different in within‐stand boundary areas relative to under canopy conditions?

2. Materials and Methods
2.1. Study Site Description

The GPR data collection for this study took place in February 2017 on GM in western Colorado, USA. GM
has elevations ranging between 3,000 and 3,400 m.a.s.l. and is relatively flat on its western part with increas-
ing elevation and topographic complexity from west to east. This location provides an ideal setting to inves-
tigate the influence of forest canopy on SWE distribution due to the number of isolated forest stands, or tree
islands, of varying dimensions (Figure 2 and Table 1) that are dominated by Engelmann spruce (Picea engel-
mannii) and Subalpine fir (Abies lasiocarpa). The prevailing wind direction is from the west (Figure 3) with a
seasonal snowpack that historically begins to accumulate in late October, peaks in mid‐April at approxi-
mately 465 mm SWE, and melts out by late May, as measured at a nearby SNOTEL station (Mesa Lakes
SNOTEL station ID 622; median values from 1981 to 2010). The SnowEx17 study period (February 2017)
on GM had amean SWE value of ~390mm at theMesa Lakes SNOTEL (135% of 1981–2010median for these
dates). This SNOTEL site had a peak SWE of 480 mm on 10 April with melt finishing by 1 June 2017. A simi-
lar disappearance date was also observed at a GM depth sensor array (Figure 3b; Jennings et al., 2018).

2.2. GPR Data

The GPR data presented here are a subset of a larger data set collected along 57 SnowEx transects during the
first 2 weeks of the campaign (8–18 February; Webb, Jennings, et al., 2018). Transects were chosen that sur-
veyed across forest boundaries to specifically examine within‐stand boundary areas. Surveys were performed
using a common‐offset Mala Geosciences, Inc. ProEx GPR system, with a 1.6 GHz shielded antenna fixed in
place on a plastic sled with an approximate measurement footprint of 1–2 m2 during this study. A
single‐frequency GPS antenna was connected to the ProEx control unit, registering location information
every second. GPR parameters evolved due to changing conditions (e.g., time window), though typical
recording parameters included a waveform‐sampling rate of 0.05 ns, a 40 ns time window, and “free run”

Figure 1. Defined areas as they pertain to a forest stand, its boundary, and the dominant wind direction. The
within‐stand boundary areas of interest for this study are labeled in bold.
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trace increments where samples are collected as fast as the processor allows. The system was towed behind a
skier or between two snowshoers allowing data collection for all landcover types on GM, including dense
forest.

Data processing was conducted using the RadExplorer software package for Week 1 of SnowEx17 and the
ReflexW‐2D software package for Week 2. To ensure consistency, multiple transects were processed using
both programs showing similar results that were typically within 0.2 ns or ~16 mm SWE using conversion
parameters described below. All radargrams were corrected to time‐zero, and a dewow filter was applied.
Ground surface reflection picking was done semi‐automatically using manually chosen control points and
a phase‐following layer picker (Figure 4a).

The two‐way traveltime (t) information of the ground surface reflection was then used to calculate snow
depth (ds) and estimate SWE based on density observations at snow pit locations (Ellerbruch &
Boyne, 1980; Gubler & Hiller, 1984; Marshall et al., 2005). Seven snow pits (Elder et al., 2018) that were adja-
cent to the analyzed transects and coincidentally surveyed by the GPR were used to determine the median

Figure 2. Overview of the Grand Mesa (GM) area of interest during the SnowEx17 field campaign showing an overview
map of the transects surveyed with ground‐penetrating radar and analyzed in this paper, three meteorological (met.)
station locations including the local scale observation site (LSOS), and snow depth sensor array (Jennings et al., 2018). All
coordinates are in decimal degrees relative to NAD83 datum (EPSG: 4269).

Table 1
Transect Descriptors and Forest Stand Parameters Including Transect ID for SnowEx17, Orientation of the Transect That Is Either East‐West (EW) or North‐South
(NS), Stand Length Defined as the Distance of Forest Canopy in the Direction Parallel to the Dominant Wind Direction (East‐West), Stand Width Defined as the
Largest Distance of Forest Canopy Along the Transect in the Direction Perpendicular to the Dominant Wind Direction (North‐South), and Mean Stand Canopy
Height Calculated From the September 2016 Airborne Snow Observatory LiDAR Flights (Painter, 2018)

Transect ID 3 13 15 19 26 29 31 33 42 49 50 56 101
Transect orientation EW EW EW EW EW EW EW EW EW NS EW EW EW
Stand length (m) 230 55 275 150 605 235 135 30 70 565 620 335 540
Stand width (m) 220 130 320 800 880 360 340 220 1,310 850 635 1,390 700
Mean stand height (m) 16.1 10.3 11.0 8.3 11.9 12.0 8.5 15.2 4.7 5.8 9.2 8.5 3.9

10.1029/2019WR024905Water Resources Research

WEBB ET AL. 4 of 17



velocity of the radar wave (v) of 0.234 m/ns (Figure 4b). Snow depth was
then calculated through the following equation:

ds ¼ v * 0:5t (1)

Depth data were converted to SWE by multiplying by the median snow
density from the same seven snow pits of 335 kg/m3 (Figure 4b). This
median density is similar to the mean of all pit observed density values
during SnowEx17 (Figure 4c). Uncertainty estimates for GPR‐derived
SWE values were estimated using the range of observed bulk densities
(Figure 4) and estimated accuracy of t picks (Marshall et al., 2005).
This resulted in an average SWE uncertainty of approximately 10%.

2.3. GPR Data Analysis

We selected 13 transects to investigate forest boundary effects on SWE dis-
tribution in within‐stand boundary areas. Transects were chosen that
transitioned across forest boundaries to specifically examine
within‐stand boundary areas. The majority of these transects (12 of 13)
were also chosen in the west‐east orientation perpendicular to a
north‐south forest boundary as this was expected to have the largest influ-
ence from the prevailing westerly winds (Figure 3a). In total, this resulted
in 10 windward within‐stand boundary areas and 8 leeward within‐stand
boundary areas. These transects were analyzed to observe the variogram
ranges of the entire transect (i.e., maximum distance of spatial autocorre-
lation between points) and coefficients of variation (COV) in a 50 m mov-
ing window. These parameters have been shown to indicate changes in

spatial patterns of snow (Deems et al., 2006; Trujillo et al., 2007). The 50 m moving window size was chosen
to have a relatively large sample size for each COV calculation, and 50 m is the approximate distance of the
variogram range for all SnowEx transects with higher canopy cover percentages (McGrath et al., 2019).
Further details toward the effect of the moving window size can be found in the supporting information
(Text S1). It was observed that the 50 m moving window preserved the spatial patterns of COV while redu-
cing the amplitude of variability in values (supporting information, Figures S1–S4).

Figure 3. (a) Wind rose for the local scale observation site (LSOS) shown in
Figure 2 for water year 2017 and (b) snow depth measurements from an
acoustic sensor array with the solid black line representing the mean of all
10 sensors (Jennings et al., 2018).

Figure 4. Ground‐penetrating radar (GPR) data showing (a) an example radargram from Transect 3 with picked ground
surface reflection shown in red, (b) mean density measurements from seven snow pits that were co‐surveyed by the GPR
unit used to determine median radar wave velocity and density, and (c) a histogram of all snow pit bulk density
observations on Grand Mesa during the full 3 weeks of SnowEx17 (Elder et al., 2018) with the 335 kg/m3 used for SWE
calculations indicated.
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We quantified the length scale of boundary effects for within‐stand
boundary areas through observations of changes between under canopy
conditions and conditions at the forest boundary. We primarily use
COV changes due to the importance in considering this parameter when
quantifying snow heterogeneity to improve simulated snow melt and
streamflow (Clark et al., 2011; Luce et al., 1998, 1999). We plotted SWE
COV as a distance from the forest boundary to as close to the center of
the forest stand as available in transect data. The forest boundary is
defined in this study as the location between forested and open areas
with canopy height of 2 m in the Airborne Snow Observatory derived
canopy data set (Painter, 2018). The length scale of within‐stand bound-
ary effects was determined using piecewise linear regression with a least
squared approach. The breakpoint in the piecewise regression that pro-
duced the highest R‐squared value while minimizing the linear slope
after the breakpoint (representing background under canopy conditions)
was used to determine the distance from the forest boundary that the
boundary effects extend (Figure 5). Similar regressions have been utilized
for many years to study within‐stand boundary effects in ecological
research (e.g., Alignier & Deconchat, 2013; Burton, 2002; Toms &
Lesperance, 2003).

2.4. Statistical Analysis

We tested if the distribution patterns in the within‐stand boundary areas and under canopy areas were sta-
tistically different using theWilcoxon rank‐sum test (Wilcoxon, 1945) that can be used interchangeably with
the Mann–Whitney test (Helsel & Hirsch, 2002). We used this method to test the null hypothesis that data
from the two data sets are from continuous distributions with equal medians at the 5% significance level.
This test has been recently used to test for significant differences in snow depth (Currier &
Lundquist, 2018); here we apply it to values of SWE and SWE COV.

3. Results
3.1. Within‐Stand Boundary Effects

Analysis of the 13 transects displays the impact of a forest canopy on SWE distribution patterns. Four trans-
ects were chosen to illustrate representative conditions of a leeward forest boundary (Figure 6a), transects
that include both windward and leeward forest boundaries for a longer stand (Figure 6b) and shorter stand
(Figure 6c), and a windward forest boundary (Figure 6d). Variogram ranges were generally on the order of
10–50 m for transects under canopy increasing to around 100 m for transects that had a higher percentage of
area in clearings, indicating higher variability of SWE distribution under canopy relative to clearings.
Piecewise linear regression of SWE COV relative to distance from the forest boundary showed length scales
of within‐stand boundary areas (Figure 7 and supporting information, Figures S5 and S6). The largest length
scale of within‐stand boundary effects was in the leeward within‐stand boundary area, ranging from 7 to
98 m (Table 2 and Figure 8) with a mean of 44 m (median of 48 m). In terms of mean canopy height along
the transect (H), leeward within‐stand boundary areas extended a mean of 4.3H (median of 4.0H; Table 2
and Figure 8). The length scale of boundary effects for windward within‐stand boundary areas ranged from
2 to 55 mwith amean of 28 m (median of 26 m), or 3.7H (median of 3.6H). In forest stands that were lesser in
length (as defined in Table 1), a stand length of 55 m produced boundary effects in both the windward and
leeward within‐stand boundary areas whereas a stand length of 30 m did not display clear boundary effects
at our scale of analysis using a 50 m moving window for COV (Figure 6c). The shorter forest stand in
Transect 33 also displays a continuing increase in SWE in the downwind direction, showing similarity to rib-
bon forests that are too short in the direction of wind for distribution patterns to settle. For this reason, and
the size of our moving window, we only utilize forest stands with length greater than 50 m for further ana-
lysis. This results in a total of nine windward and seven leeward forest boundaries being used for the follow-
ing analyses.

Figure 5. Example piecewise linear regression of SWE coefficient of
variation (COV) data in a 50 m moving window relative to the distance
from forest boundary used to determine the size of within‐stand boundary
areas as defined in Figure 1. Example data shown here are from Transect 3.
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The SWE COV values were generally greater for the in‐clearing and within‐stand boundary areas relative to
under canopy areas (Figures 6iii and 7) showing similar spatial patterns in variability as variograms
(Figure 6iv). This is likely the result of snow drifting and/or scouring occurring in both the windward and
leeward in‐clearing boundary areas. Ground surface elevations indicate that the analyzed transects generally
have gradually increasing elevations from west to east, with little to no topographic wind shielding affecting
the within‐stand boundary areas (supporting information, Figure S7). This suggests that the within‐stand
boundary effects observed are primarily a result of the forest stand. Stand parameters (canopy height, stand
width, and stand length) did not correlate to within‐stand boundary effects, though transects with windward
forest boundaries used for this study tend to have lesser canopy heights than those with leeward forest
boundaries. However, a larger number of within‐stand boundary areas for analysis would be needed to pro-
vide statistical significance of these stand parameters.

The results from the Transect 49, oriented perpendicular to the dominant wind direction (i.e., north‐south),
showed within‐stand boundary effects extending 6 m (~1H) displaying differing within‐stand boundary
effects, though the variogram range was similar to other transects. The north‐south transect has a relatively
large stand length of 565 m (Table 1). However, the stand widths are quite different with Transect 49 having
a stand width of 850 m.

Figure 6. Data for Transects (a) 3, (b) 13, (c) 29, and (d) 56 showing (i) canopy height (Painter, 2018), (ii) SWE derived
from ground‐penetrating radar (GPR) and 3 m spaced snow depth probe observations (Brucker et al., 2018), (iii) SWE
coefficient of variation (COV) in a 50 m moving window, and (iv) the variogram for the entire transect (note
differences in y‐axes). All data have been oriented such that wind direction is from left to right. Uncertainty bands in row
(ii) were estimated using the range of observed bulk snow densities (Figure 4) and estimated accuracy of GPR picks. SWE
estimates using snow depth probes for row (ii) were estimated by multiplying depth by the nearest pit observed snow
density in similar canopy condition.
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Statistical analysis shows that the SWE COV values are significantly different for all boundary areas deter-
mined in this study (Table 3). However, when comparing SWE values for within‐stand boundary areas to
under canopy values, five of the nine windward within‐stand boundary areas and five out of seven leeward
within‐stand boundary areas were determined to be significantly different from under canopy values
(Table 4). On average, SWE in windward and leeward within‐stand boundary areas were 16 and 46 mm
higher, respectively, compared to under canopy areas. Mean absolute differences were 32 and 74 mm,
respectively. Similarly, mean differences in SWE COV were 0.014 and 0.020 (mean absolute differences of
0.025 and 0.035) for windward and leeward within‐stand boundary areas relative to under canopy areas,
respectively.

4. Discussion

The GPR data set collected during SnowEx17 on GM observed SWE distributions in forested areas and across
forest boundaries, providing the unique opportunity to investigate spatial patterns in within‐stand boundary
areas. There has been limited previous work on this topic because forest cover can limit other remote sensing
methods, with increasing errors under canopy (Harpold et al., 2014; Hopkinson et al., 2012; Tinkham

Figure 7. Results of the analyses showing the coefficient of variation (COV) with piecewise linear regressions and
resulting boundary areas determined for Transects (a) 3, (b) 56, (c) 101, (d) 29, and (e) 31. Black dots in the
within‐stand boundary areas indicate significant differences between the marked within‐stand boundary areas and the
associated under canopy area at the 5% level using the Wilcoxon rank‐sum test. Transect distance values are from the
western‐most point of each transect. Note the differences in the y‐axes.
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et al., 2014). Often, analyses of snow distribution directly in forested areas
are explicitly avoided using LiDAR products because of decimeter uncer-
tainty in areas with denser canopy and instead focus on the influence of
forests on adjacent locations in clearings (e.g., Currier &
Lundquist, 2018). Recently airborne LiDAR mapping of snow depth
under canopies has been greatly improved, though fine scale (1 m) depth
products for GM during SnowEx17 still have gaps in data for forested
areas that can range from 12% to 26% (Currier et al., 2019). Snow depth
variability for in‐clearing boundary areas has been recently shown to be
significantly different for different environments (Currier &
Lundquist, 2018), with the relative contributions of longwave radiation
from the vegetation and shading from shortwave radiation showing differ-
ences over a range of snow climates. The GPR data presented here provide
a spatially extensive data set that can and has been further used to assess
airborne LiDAR observations during SnowEx17 (McGrath et al., 2019)
and in turn enable further examination of spatial patterns such as
within‐stand boundary effects beyond individual transects on GM,
depending on the canopy density and LiDAR retrieval properties.

The effect of vegetation on wind redistribution varies from the individual
tree to stand (Revuelto et al., 2015), up to basin (Roth & Nolin, 2017) and
regional (Tennant et al., 2017) spatial scales. At the scale of tens to hun-
dreds of meters, as we investigate in this paper, previous work has focused
on vegetation effects for in‐clearing boundary areas that tend to form large
snow drifts (Hiemstra et al., 2002, 2006). Our analysis shows the influence
of boundary effects in within‐stand boundary areas that are important for
larger forest stands. We observed leeward within‐stand boundary effects
up to 98 m with a mean of 44 m (4.3H, Figure 8). This is over 50% greater
than the observed windward within‐stand boundary effect that resulted in
amaximum of 55m and amean of 28m (3.7H). It is important to note that
the leeward within‐stand boundary areas are only ~15% greater than
windward within‐stand boundary areas when considering the distance
as a ratio to canopy height. Though these observations were conducted
in tree islands on GM, a similar within‐stand boundary effect at tree line
for other locations is evident in previous studies. A similar length scale
within‐stand boundary effect can be observed in data presented by
Trujillo et al. (2009), though not the focus of their study. Another example
from Finland at a boundary between forest and tundra had a similar effect
(Vajda et al., 2006). Golding and Swanson (1986) analyzed transect data
across forest clearings and show clear within‐stand boundary effects.
These transect data display the transition of snow depth occurring over
many tens of meters. However, the transects in Golding and Swanson
(1986) continue only 1H to 2H into the forest stands and thus do not cap-
ture the full suite of areas found in this study (e.g., Figure 1). Therefore,
direct estimation of within‐stand boundary area of other studies for com-
parison are currently unavailable. However, these additional studies sug-
gest that other forest stands have similar boundary areas of more than
2.0H, in agreement with our observations, thereby suggesting that our
observations are not site specific. Though it is important to note the differ-
ences in boundary effects for different climate conditions observed by
Currier and Lundquist (2018), as these physical processes are also influen-
cing snow distribution in within‐stand boundary areas. Thus, this topic
merits further research to determine the length scale of these observed
within‐stand boundary effects for different canopy and

Table 2
Resulting Boundary Area Sizes as a Length and Ratio of Average Canopy
Height Along the Transect (H)

Transect

Windward
within‐stand
boundary
area (m)

Windward
within‐stand
boundary area
(ratio of H)

Leeward
within‐stand
boundary
area (m)

Leeward
within‐stand
boundary area
(ratio of H)

3 76 4.7
13 6 0.6 7 1.3
15 25 2.3
19 2 0.2 98 10.7
26 15 1.3
29 43 3.6 48 4.0
31 27 3.2 49 5.7
42 21 4.4 12 2.5
50 51 5.6
56 55 6.4
101 26 6.7

Note. Values in bold text indicate significant differences between
within‐stand boundary areas and under canopy areas for both COV
(Table 3) and SWE (Table 4) at the 5% level using the Wilcoxon
rank‐sum test. Only transects oriented east‐west and those determined
to have within‐stand boundary areas at the scale of our analysis are
shown here.

Figure 8. Boxplot summary of forest boundary effects for all windward and
leeward within‐stand boundary areas surveyed in the analyzed transects
and presented as (a) distance from the forest boundary and (b) a ratio of
mean stand canopy height.
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climate/snowpack conditions. These different conditions may also require the use of algorithms more
advanced than the simple piecewise linear regression that we successfully used in the present study.
Collectively, the analyses presented here and in Currier and Lundquist (2018) highlight the influence of
canopy effects at forest boundary areas and the need for further dedicated studies in the future.

The redistribution of snow from wind depends, in part, upon complex fluid dynamics in the forest canopy.
These complex dynamics have been predominantly investigated on the windward forest boundary (Belcher
et al., 2008; Dupont & Brunet, 2008; Tischmacher & Ruck, 2013). Belcher et al. (2003) discuss the theoretical
adjustment of effective roughness length parameters with fetch relative to the boundary layer, showing
results that indicate different wind patterns at the windward and leeward boundary areas of a forest stand
based on field data and wind tunnel experiments. When comparing boundary effects between Belcher
et al. (2003) and the SWE distribution patterns observed on GM, similarities in the relative scale of effective
roughness changes and within‐stand boundary effects on SWE distribution patterns occur. Furthermore,
Detto et al. (2008) show the turbulence dynamics at the leeward side of a forest stand that could further
explain the larger leeward within‐stand boundary effects observed.

Table 3
The Coefficient of Variation Mean and Median Values for the Within‐Stand Boundary and Under Canopy Areas

Coefficient of variation

Transect

Mean Median

Windward within‐stand
boundary area

Under
canopy

Leeward within‐stand
boundary area

Windward within‐stand
boundary area

Under
canopy

Leeward within‐stand
boundary area

3 0.043 0.085 0.044 0.08
13 0.316 0.282 0.26 0.317 0.289 0.26
15 0.123 0.142 0.122 0.143
19 0.075 0.067 0.088 0.075 0.675 0.091
26 0.108 0.086 0.106 0.081
29 0.112 0.081 0.161 0.112 0.086 0.162
31 0.115 0.074 0.125 0.117 0.075 0.124
42 0.0663 0.071 0.064 0.068 0.072 0.064
50 0.085 0.113 0.087 0.095
56 0.114 0.078 0.122 0.078
101 0.119 0.094 0.124 0.097

Note. Values in bold text were found to be significantly different at the 5% level using the Wilcoxon rank‐sum test for comparing within‐stand boundary areas to
under canopy areas. Note that all values in this table were found to be significant. Only transects oriented east‐west and those determined to have within‐stand
boundary areas at the scale of our analysis are shown here.

Table 4
The Snow Water Equivalent Mean and Median Values for the Within‐Stand Boundary and Under Canopy Areas

Snow water equivalent (mm)

Transect

Mean Median

Windward within‐stand
boundary area

Under
canopy

Leeward within‐stand
boundary area

Windward within‐stand
boundary area

Under
canopy

Leeward within‐stand
boundary area

3 285 299 288 295
13 282 325 628 285 276 551
15 290 284 284 272
19 404 360 352 403 365 357
26 346 446 343 443
29 342 342 333 338 340 336
31 390 413 378 382 403 372
42 522 516 470 510 512 463
50 553 447 563 455
56 498 443 475 443
101 579 582 578 585

Note. Values in bold text were found to be significant at the 5% level using theWilcoxon rank‐sum test. Only transects oriented east‐west and those determined to
have within‐stand boundary areas at the scale of our analysis are shown here.
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These studies on the complex wind dynamics that occur around and within a forest stand form a conceptua-
lization of how the within‐stand boundary effects on snow distribution may form (Figure 9). The windward
forest boundary will create an abrupt upward angle in wind vectors from a rapid increase in effective rough-
ness length. This feature causes a sharp decline in wind speed over a short distance in the windward
within‐stand boundary area (Belcher et al., 2003; Dupont & Brunet, 2008; Tischmacher & Ruck, 2013).
The effective roughness length reaches a steady maximum value above the under canopy area of the stand.
The effective roughness length parameter then begins a gradual decline in the leeward within‐stand bound-
ary area, allowing wind vectors to begin angling toward the ground. Additionally, a large eddy forms in the
leeward in‐clearing boundary area for a horizontal distance of 2–5H (Detto et al., 2008). This eddy, or recir-
culation region, will have a wind structure that can have wind vectors re‐entering the forest stand along with
the downward angled wind vectors from the top of the canopy (Figure 9c). These processes at the leeward
within‐stand and leeward in‐clearing boundary areas, based on Belcher et al. (2003) and Detto et al. (2008),
create a leeward within‐stand boundary area environment that has a larger length scale relative to that
which occurs at the windward within‐stand boundary area, explaining the magnitude of within‐stand
boundary effects observed in our study (Figures 8 and 9). These wind dynamics will impact the distribution
of SWE during snowfall events, redistribution of snow in tree canopies, and redistribution from in‐clearing
to within‐stand boundary and under canopy areas. It is unlikely that snow under a forest canopy is redistrib-
uted due to the increased effective roughness length parameter that decreases under‐canopy wind speeds.
However, there is much work that could be done to further understand the complex fluid dynamics that
occur in the wind field during winter periods and how this relates to the wind redistribution and of snow
and energy fluxes in a forested area. For example, further investigations are warranted at within‐stand
boundary areas oriented parallel to wind direction, with less consistent wind directions, and different
canopy architectures that likely alter the scale of these influences (e.g., Cassiani et al., 2008; Kanani‐
Sühring & Raasch, 2015).

Alternative hypotheses considered to explain the observed variability include forest canopy structure effects
on wind fields. We analyzed the available canopy height data using piecewise linear regression that showed

Figure 9. Conceptual diagram of the wind dynamics that occur around a forest stand in the direction of wind. Shown
here is (a) representative pattern of snow water equivalent (SWE) distribution observed in this study using relative
depths of Transect 56 for the windward edge and boundary effect and Transect 3 for the middle section, leeward
boundary effect, and leeward edge, (b) the relative effective roughness length parameter when adjusted for fetch along
the distance of a forest stand (Belcher et al., 2003), and (c) wind vectors that are expected as a result of the effective
roughness length parameter and recirculation region on the leeward edge of the stand (Detto et al., 2008).
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no correlation to observed within‐stand boundary effects (supporting information, Figure S12a).
Additionally, we compared the horizontal distance of younger trees around the edges into the stand from
the forest boundary and similarly found no correlation (supporting information, Figure S12b).
Furthermore, canopy density changes in a similar pattern as canopy height along the observed transects sug-
gesting that this is not likely a major factor either. Energy fluxes such as shortwave radiation penetration
into the forest stand can be important for SWE distribution processes during accumulation, though less
likely to impact east‐west distributions (focus of our study) compared to north‐south distributions. Energy
fluxes may play a stronger role in within‐stand boundary areas for north‐south transects during the spring
melt season at magnitudes described below (e.g., Musselman et al., 2008). Future work could incorporate
further analyses of LiDAR point cloud data, canopy density, energy balance modeling, and high‐density
instrumentation to further investigate the within‐stand boundary areas in the field. Additionally, wind tun-
nel studies may provide valuable insights toward factors such as canopy density, canopy structure, and wind
speeds on within‐stand boundary area SWE distribution.

Our results of within‐stand boundary areas compare well with known wind deposition for in‐clearing areas.
Previous work has shown that wind‐related deposition downwind of a forest can extend 3H to 10H (Brandle
& Finch, 1991; Hiemstra et al., 2002, 2006; Tabler, 2003). The mean within‐stand boundary areas that we
observed are at the lower end of this range with 3.7H and 4.3H for windward and leeward within‐stand
boundary areas, respectively. Other energy budget components tend to have influences at lesser length
scales than our observed within‐stand boundary areas (Currier & Lundquist, 2018). Enhanced longwave
radiation from the canopy has an influence of 0.5H (Lawler & Link, 2011; Musselman & Pomeroy, 2017;
Seyednasrollah & Kumar, 2014; Webster et al., 2016; Woo & Giesbrecht, 2000) whereas forest shading of
shortwave radiation extends 0.5H to 2.0H (Lawler & Link, 2011; Musselman et al., 2015; Seyednasrollah &
Kumar, 2014).

Current representation of snow redistribution in process‐based models is dominantly driven by topography.
Explicit redistribution of snow across complex topography can be represented with multiple approaches
including simple terrain‐based parameters (e.g., Winstral et al., 2002), semi‐empirical parameterizations of
vertically integrated snow transport rates, and schemes that fully resolve the 3‐D turbulent‐diffusion of blow-
ing snow (i.e., Mott et al., 2018). However, snow redistribution within forest stands have yet to be as thor-
oughly examined as terrain‐based approaches. Most models include wind speed reduction in forested pixels
(e.g., SnowPalm, Broxton et al., 2015) but do not model the patterns of wind flow through forests and around
individual trees due to computational limitations. To represent snow drifts that form in open areas on the lee-
side of forests, some modeling efforts have treated trees as roughness elements (i.e., as part of the terrain) by
including canopy height in the digital elevation model (Deems, 2007; Hiemstra et al., 2002, 2006). These
efforts have focused on ribbon forests with relatively narrow profiles that could be treated as a wind break
similar to a snow fence. However, wind flow dynamics within larger forest stands, at the forest boundaries,
and the impacts on snow redistribution have yet to be attempted in modeling analyses. Prior
high‐resolution modeling analyses of snow in forests have focused on classified zones with respect to canopy
(e.g., Broxton et al., 2015) but with no consideration of windward or leeward within‐stand boundary areas. In
an auxiliary analysis (see Text S2), we assessed whether the well‐developed SnowModel (Liston et al., 2007;
Liston&Elder, 2006; Liston& Sturm, 1998), using available data (Skiles, 2018), captured the boundary effects
within a forest stand, and whether a high spatial resolution in the model is necessary to do so. All snowmod-
els (to our knowledge) lack the complex wind dynamics on the leeward side of forests (Figure 9), but it is pos-
sible for current models to capture the windward within‐stand boundary effect due to the reduction of wind
speed that occurs when transitioning from open areas to a forested area. Indeed, the supplemental modeling
experiment confirms that the within‐stand boundary effects on SWE are reproduced in windward areas but
not in leeward areas, which illustrates the need for more process understanding and model development.

Furthermore, when validating model data for forested areas, it is important to use under canopy conditions
and not within‐stand boundary areas. The model error may be overestimated or incorrectly assess simula-
tion bias (i.e., result in a negative bias when a positive bias is more accurate) based on field measurements
in within‐stand boundary areas and not under canopy conditions (supporting information, Figures S7 and
S8). To include these within‐stand boundary areas, more complex simulations of wind flow in forests
(e.g., recirculation at the leeward forest boundary) could be achieved with atmospheric model output or
coupled 3‐D fluid dynamics models, but with added computational expense.
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When considering the forest stand boundary effects on SWE distribution from a watershed‐scale modeling
perspective, lumped parameters that include within‐stand boundary areas of forest stands could prove ben-
eficial. Based on the observations presented in these data, alongwith other data that suggest similar boundary
effects likely occur elsewhere (Trujillo et al., 2009; Vajda et al., 2006), a 4.0H to 4.5H leeward within‐stand
boundary area and 3.5H to 4.0H windward within‐stand boundary area could be used. In addition to the
observed within‐stand boundary effects in mid‐winter SWE distributions, these areas will have different
energy balance components that further support an additional area of parameters for modeling purposes
(e.g., Andreadis et al., 2009; Musselman, Molotch, Margulis, Kirchner, et al., 2012). In particular, including
sub‐element variability as parameterized by COV can improve snowmelt and runoff in simulations (Clark
et al., 2011; Luce et al., 1998, 1999). Incorporating these additional within‐stand boundary areas into a
lumped parametermodel could prove beneficial, though further studies are necessary to quantify this benefit.

Furthermore, to quantify conditions under canopy in a forested area, instrumentation and measurements
should occur at least 50 m and potentially up to 100 m from the forest boundary, depending on wind direc-
tion. In terms of a factor to mean stand canopy height, these values are approximately 6.7H and 10.7H,
respectively. This distance would ensure that boundary effects are not impacting measurements and more
representative under canopy conditions are being observed. Though the observations presented herein were
collected during a short period relative to the time of snow cover (Figure 3b), the within‐stand boundary
effects are likely to occur over the entire snow covered season due to (1) the consistent wind direction on
GM (Figure 3a), (2) the similar patterns of snow depth differences observed between multiple sensors under
varying canopy conditions the entire time of snow cover (Figure 3b), and (3) wind profile dynamics that are
being interpreted as the cause of the observed within‐stand boundary effects will be based on stand para-
meters that are constant at this spatiotemporal scale (Figure 8). However, factors such as exposure, topogra-
phy, subsequent burial of sub‐canopy, canopy architecture at the individual tree and stand scales, and
advanced regeneration need to also be considered. Additionally, further investigations toward the scale of
similar within‐stand boundary areas during the melt season with potentially stronger influences from
energy balance factors are merited.

Future investigations andmodeling studies could benefit from considering the within‐stand boundary effects
on forested area snow distributions shown in this paper. Additionally, survey design and instrumentation site
selection could be improved for forested areas through consideration of the length scales of boundary effects
that we observed. The data presented herein could also be useful to assess airborne instruments to further
investigate the boundary effects across GM during SnowEx17. It is important to further investigate the con-
trolling parameters on the observed within‐stand boundary effects for future applications. We recommend
these investigations utilize empirical observations, modeling, and wind tunnel experiments to target para-
meters such as, but not limited to, canopy architecture, canopy health, tree species, wind speed and direction
(at multiple heights), topographic influences, climate type, and ground cover vegetation type and height.

5. Conclusions

The GPR data set collected during SnowEx17 on GM provides data that reveal spatial SWE patterns in
within‐stand boundary areas. These data provide high‐resolution observations (i.e., multiple observations
per meter) at larger spatial extents (i.e., hundreds of meters) than any other ground‐based measurements
for assessing airborne sensors flown during SnowEx17. The within‐stand boundary area spatial patterns
observed display boundary effects that occur at varying scales depending on the wind direction relative to
the stand. Utilizing a moving window for COV values, we determined the windward within‐stand boundary
area to have a length scale which ranged from 2 to 55 m with a mean of 28 m. In terms of mean canopy
heights, these distances represent a range of 0.2H to 6.7H and a mean of 3.7H. The leeward within‐stand
boundary area length scale ranged from 7 to 98 m with a mean of 44 m. In terms of mean canopy heights,
these distances represent a range of 0.7H to 10.7H and a mean of 4.3H. We present a conceptual framework
of the complex wind dynamics that occur in the direction of wind with a forest stand to explain the observed
within‐stand boundary effects. Future investigations could improve understanding of this complex process
and parameterize the driving variables of these patterns. Additionally, future survey designs and instrument
deployments will benefit from considering within‐stand boundary effects to ensure observations of the
intended conditions.
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Data Availability Statement

Data from the NASA SnowEx campaign can be found online through the National Snow and Ice Data Center
(https://nsidc.org/data/snowex). Citations for specific data sets can be found in the references section.
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